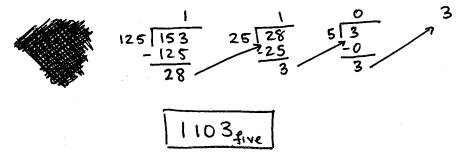
Name:


Show all work clearly and in order.

1. Convert the following to base 10 (use the expanded form to help you).

(a)
$$1301_{\text{five}} = 1(5^2) + 3(5^2) + 0(5') + 1(1)$$

= $125 + 3(25) + 0 + 1$
= $201 = 201_{\text{tot}}$

(b)
$$10111_{\text{two}} = 1(2^4) + 0(2^3) + 1(2^2) + 1(2^1) + 1(2^0)$$

= $16 + 0 + 4 + 2 + 1$
= $23 = 23_{\text{+m}}$

2. Convert 153_{ten} to base five.

3. Use the definition of addition to compute 2+5.

$$Xet A = \{a_1b\}$$

$$B = \{c,d,e,f,g\}$$

$$n(A) = 2$$

$$n(B) = 5$$

$$2+5 = n(AUB) = n(\{a_1b\} \cup \{c,d,e,f,g\}) = n(\{a_1b,c,d,e,f,g\})$$

$$= \boxed{7}$$

4. Use the definition of subtraction (take-away definition) to compute 4-2.

$$A = \{a_1b_1, c_1d\}$$
 $B = \{a_1b\} \in \mathbb{Z} \text{ Note: } B \subseteq A$
 $n(A) = 4$
 $n(B) = 2$
 $4 - 2 = n(A - B) = n(\{a_1b_1c_1d\} - \{a_1b\}) = n(\{c_1d\}) = 2$

5. Is the set $\{0, 2, 4, 6, \ldots\}$ closed under addition?

6. Is the set $\{0, 1, 2, 3\}$ closed under addition?