TEST 1

Math 152 - Calculus II	Scor	e: out of 100
2/8/2013	Name:	
Read all of the following information before st	tarting the exam:	

- You have 50 minutes to complete the exam.
- Show all work, clearly and in order, if you want to get full credit. Please make sure you read the directions for each problem. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Please box/circle or otherwise indicate your final answers.
- Please keep your written answers brief; be clear and to the point. I will take points off for rambling and for incorrect or irrelevant statements.
- This test has 8 problems and is worth 100 points. It is your responsibility to make sure that you have all of the pages!
- Good luck!

1. Evaluate: \int

(a)
$$\int \sec^2(x)\sqrt{1+\tan(x)}dx.$$

(b)
$$\int \frac{\sin(2x)}{1 + \cos(2x)} dx.$$

2. Find the average value of
$$f(x) = \frac{e^x}{(1+e^x)^{1/3}}$$
 on [1,3].

3. Find the area enclosed by the curves y = x + 2, $y = xe^{(-x^2)}$, x = 0 and x = 2.

4. Find the volume of the solid obtained by rotating the region bounded by $x = y^2$, x = 1 and $y \le 0$ about the line x = -2 using **any method**.

5. Set up but do not evaluate the integral for the volume of the solid obtained by rotating the region bounded by $y = 1 - x^2$ and y = x - 1 about the line y = 3 using the Washer/Disk Method.

6. Set up but do not evaluate the integral for the volume of the solid obtained by rotating the region bounded by $y = e^{2x} + 1$, $y = e^x$, x = 1 and x = 2 about the line x = -1 using the (cylindrical) Shell Method.

7. Set up but do not evaluate the integral for the length of the curve $y = \sin^2(x)$ from x = 1 to x = 3.

8. Set up but do not evaluate the integral for the surface area of the solid formed by rotating the portion of curve $y = e^{(1+3x^2)}$ from x = 1 to x = 3 about the x-axis.