TEST 1 PRACTICE PROBLEMS CALCULUS II (MATH 152) **FALL 2013**

(1) Evaluate

(a)
$$\int \theta \sec^2(3\theta^2)d\theta$$

(b)
$$\int \frac{x^2}{\sqrt{x^3 + 4}} dx$$

(c)
$$\int \frac{\cos(z)}{(1+\sin(z))^3} dz$$

(d)
$$\int \frac{\cos(z)}{1 + \sin(z)} dx$$

(e)
$$\int_0^1 \frac{1}{9+x^2} dx$$

- (2) Find the average value of each of the following functions over the specified interval:
 - (a) $f(x) = \sqrt{5x 1}$ over [1, 2].
 - (b) $q(x) = \cos(x)e^{\sin(x)}$ over [2, 3].
- (3) For each of the following problems, find the area bounded by the given curves/regions.
 - (a) $y = x^3 6x^{2} + 8x$ and y = 0.
 - (a) $y = x^{2}$ ox + 6x and y = 0. (b) $y = e^{2x}$, $y = -e^{x}$, x = -2 and x = 5. (c) $x = y^{2}$, x = 2. (d) $x = y^{2}$, x = 2, $y \ge 0$. (e) $x = y^{2}$, x = 2, $y \ge -1$.

 - (f) $x = y^2 + 1$ and $x = -y^2 + 3$.
- (4) For each of the following problems set up, but do not evaluate the integral for the volume of the solid generated by rotating the region bounded by the given curves/regions about the specified axis of rotation using the Washer/Disk Method.
 - (a) Region: $y = x^2 + 1$, y = 3, $x \ge 0$; Axis of Rotation: x-axis.
 - (b) Region: $y = x^2 + 1$, y = 3, $x \ge 0$; Axis of Rotation: y = -2.
 - (c) Region: $y = x^2 + 1$, y = 3, $x \ge 0$; Axis of Rotation: y = 1.
 - (d) Region: $y = x^2 + 1$, y = 3, $x \ge 0$; Axis of Rotation: y = 3.
 - (e) Region: $y = x^2 + 1$, y = 3, $x \ge 0$; Axis of Rotation: y = 5.
 - (f) Region: $y = x^2 + 1$, y = 3, $x \ge 0$; Axis of Rotation: y-axis.
 - (g) Region: $y = x^2 + 1$, y = 3, $x \ge 0$; Axis of Rotation: x = -5.
 - (h) Region: $y = x^2 + 1$, y = 3, $x \ge 0$; Axis of Rotation: x = 5.

- (5) For each of the following problems set up, but do not evaluate the integral for the volume of the solid generated by rotating the region bounded by the given curves/regions about the specified axis of rotation using the (Cylindrical) Shell Method.
 - (a) Region: $y = x^2 + 1$, y = 3, $x \ge 0$; Axis of Rotation: x-axis.
 - (b) Region: $y = x^2 + 1$, y = 3, $x \ge 0$; Axis of Rotation: y = -2.
 - (c) Region: $y = x^2 + 1$, y = 3, $x \ge 0$; Axis of Rotation: y = 1.
 - (d) Region: $y = x^2 + 1$, y = 3, x > 0; Axis of Rotation: y = 3.
 - (e) Region: $y = x^2 + 1$, y = 3, $x \ge 0$; Axis of Rotation: y = 5.
 - (f) Region: $y = x^2 + 1$, y = 3, $x \ge 0$; Axis of Rotation: y-axis.
 - (g) Region: $y = x^2 + 1$, y = 3, $x \ge 0$; Axis of Rotation: x = -5.
 - (h) Region: $y = x^2 + 1$, y = 3, $x \ge 0$; Axis of Rotation: x = 5.
- (6) For each of the following problems find the volume of the solid generated by rotating the region bounded by the given curves/regions about the specified axis of rotation using any method.
 - (a) Region: y = 4 3x, y = 3, y = 0, x = 0; Axis of Rotation: y-axis.
 - (b) Region: y = 4 3x, y = 3, y = 0, x = 0; Axis of Rotation:
 - (c) Region: $y = \sqrt{2-x}$, x = -2, y = 0; Axis of Rotation: y = -3.
 - (d) Region: $y = 1/x^2$, y = 2, x = 2; Axis of Rotation: x-axis.

 - (e) Region: $y = 1/x^2$, y = 2, x = 2; Axis of Rotation: y-axis. (f) Region: $y = 1/x^2$, y = 2, x = 2; Axis of Rotation: x = -5.
- (7) Find the length of the given curve over the specified interval.
 - (a) $y = 2x^{3/2} + 1$ from x = 0 to x = 1.
 - (b) $x = \frac{1}{3}(y^2 + 2)^{3/2}$ from y = 0 to y = 1.
 - (c) $y^2 = x^3$ from x = 2 to x = 7.
- (8) Find the area of the surface generated by revolving of the given curve about the x-axis.
 - (a) y = 5x from x = 0 to x = 1.
 - (b) $y = \sqrt{9 x^2}$ from x = 0 to x = 1.
- (9) A force of 10 N is required to hold a spring that has been stretched from its natural length of 0.2 m to a length of 0.3 m. How much work is done in stretching the spring from 0.3 m to 0.4 m?
- (10) It takes 1 J of work to stretch a spring from its natural length to 10 m beyond its natural length. What is the force that is required to hold the stretched spring a distance of 20 m beyond its natural length?