TEST 1 PRACTICE PROBLEMS CALCULUS II (MATH 152) SPRING 2013

(1) Evaluate

(a)
$$\int \theta \sec^2(3\theta^2) d\theta$$

(b)
$$\int \frac{x^2}{\sqrt{x^3 + 4}} dx$$

(c)
$$\int \frac{\cos(z)}{(1 + \sin(z))^3} dz$$

(d)
$$\int \frac{\cos(z)}{1 + \sin(z)} dx$$

(e)
$$\int_0^1 \frac{1}{9 + x^2} dx$$

(2) Find the average value of each of the following functions over the specified interval:

(a)
$$f(x) = \sqrt{5x - 1}$$
 over [1, 2].
(b) $g(x) = \cos(x)e^{\sin(x)}$ over [2, 3].

(3) For each of the following problems, find the area bounded by the given curves/regions.

(a)
$$y = x^3 - 6x^2 + 8x$$
 and $y = 0$.
(b) $y = e^{2x}, y = -e^x, x = -2$ and $x = 5$.
(c) $x = y^2, x = 2$.
(d) $x = y^2, x = 2, y \ge 0$.
(e) $x = y^2, x = 2, y \ge -1$.
(f) $x = y^2 + 1$ and $x = -y^2 + 3$.

- (4) For each of the following problems set up, but do not evaluate the integral for the volume of the solid generated by rotating the region bounded by the given curves/regions about the specified axis of rotation using the Washer/Disk Method.
 - (a) Region: $y = x^2 + 1$, y = 3, $x \ge 0$; Axis of Rotation: x-axis.
 - (b) Region: $y = x^2 + 1$, y = 3, $x \ge 0$; Axis of Rotation: y = -2.
 - (c) Region: $y = x^2 + 1$, y = 3, $x \ge 0$; Axis of Rotation: y = 1.
 - (d) Region: $y = x^2 + 1$, y = 3, $x \ge 0$; Axis of Rotation: y = 3.
 - (e) Region: $y = x^2 + 1$, y = 3, $x \ge 0$; Axis of Rotation: y = 5.
 - (f) Region: $y = x^2 + 1$, y = 3, $x \ge 0$; Axis of Rotation: y-axis.

- (g) Region: $y = x^2 + 1$, y = 3, $x \ge 0$; Axis of Rotation: x = -5.
- (h) Region: $y = x^2 + 1$, y = 3, $x \ge 0$; Axis of Rotation: x = 5.
- (5) For each of the following problems set up, but do not evaluate the integral for the volume of the solid generated by rotating the region bounded by the given curves/regions about the specified axis of rotation using the (Cylindrical) Shell Method.
 - (a) Region: $y = x^2 + 1$, y = 3, $x \ge 0$; Axis of Rotation: x-axis.
 - (b) Region: $y = x^2 + 1$, y = 3, $x \ge 0$; Axis of Rotation: y = -2.
 - (c) Region: $y = x^2 + 1$, y = 3, $x \ge 0$; Axis of Rotation: y = 1.
 - (d) Region: $y = x^2 + 1$, y = 3, $x \ge 0$; Axis of Rotation: y = 3.
 - (e) Region: $y = x^2 + 1$, y = 3, $x \ge 0$; Axis of Rotation: y = 5.
 - (f) Region: $y = x^2 + 1$, y = 3, $x \ge 0$; Axis of Rotation: y-axis.
 - (g) Region: $y = x^2 + 1$, y = 3, $x \ge 0$; Axis of Rotation: x = -5.
 - (h) Region: $y = x^2 + 1$, y = 3, $x \ge 0$; Axis of Rotation: x = 5.
- (6) For each of the following problems find the volume of the solid generated by rotating the region bounded by the given curves/regions about the specified axis of rotation using **any method**.
 - (a) Region: y = 4 3x, y = 3, y = 0, x = 0; Axis of Rotation: y-axis.
 - (b) Region: y = 4 3x, y = 3, y = 0, x = 0; Axis of Rotation: x-axis.
 - (c) Region: $y = \sqrt{2-x}$, x = -2, y = 0; Axis of Rotation: y = -3.
 - (d) Region: $y = 1/x^2$, y = 2, x = 2; Axis of Rotation: x-axis.
 - (e) Region: $y = 1/x^2$, y = 2, x = 2; Axis of Rotation: y-axis.
 - (f) Region: $y = 1/x^2$, y = 2, x = 2; Axis of Rotation: x = -5.
- (7) Find the length of the given curve over the specified interval.
 - (a) $y = 2x^{3/2} + 1$ from x = 0 to x = 1.
 - (b) $x = \frac{1}{3}(y^2 + 2)^{3/2}$ from y = 0 to y = 1.
 - (c) $y^2 = x^3$ from x = 2 to x = 7.
- (8) Find the area of the surface generated by revolving of the given curve about the x-axis.
 - (a) y = 5x from x = 0 to x = 1.
 - (b) $y = \sqrt{9 x^2}$ from x = 0 to x = 1.

NATHAN REFF, DIVISION OF MATHEMATICS, ALFRED UNIVERSITY, ALFRED, NY 14802, U.S.A. *E-mail address*: reff@alfred.edu