${f TEST}$ 2

Math 271 - Differential Equations

	Score:	out of 100
	•	
Name	e:	

Read all of the following information before starting the exam:

- You have 50 minutes to complete the exam.
- Show all work, clearly and in order, if you want to get full credit. Please make sure you read the directions for each problem. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Please box/circle or otherwise indicate your final answers.
- Please keep your written answers brief; be clear and to the point. I will take points off for rambling and for incorrect or irrelevant statements.
- This test has 5 problems and is worth 100 points. It is your responsibility to make sure that you have all of the pages!
- Good luck!

.

5.

5

1. The function $y_1 = x^4$ is a solution to $x^2y'' - 7xy' + 16y = 0$. Use the reduction of order equation formula to find a second solution $y_2(x)$. (NOTE: you do not need to vertify that y_1 is a solution, just find y_2 .) $y'' - \frac{7 \times}{X^2} y' + \frac{16}{X^2} y = 0 \implies y'' - \frac{7}{X} y' + \frac{16}{X^2} y = 0$

$$y_2 = x^4 \left(\frac{e^{-S^{-\frac{3}{2}} x} dx}{(x^4)^2} dx \right)$$

$$\frac{x}{P(x)}$$
N.B. x>0 may be assumed:

$$= x^{4} \int \frac{e^{7\ln(x)}}{x^{8}} dx$$

$$= x^{4} \int \frac{e^{\ln(x^{2})}}{x^{8}} dx$$

$$= x^4 \left(\frac{x^7}{x^8} dx \right)$$

$$= x^{4} \int \frac{1}{x} dx = \overline{\left[x^{4} \ln (x)\right]}$$

2. Determine whether the given set of functions is linearly independent on the interval $(0, \infty)$. SHOW WORK AND CLEARLY STATE whether the set of functions is linearly independent or linearly dependent.

(a)
$$f_1(x) = x$$
, $f_2(x) = x \ln(x)$

$$\left| \begin{array}{c} \times \times \ln(x) \\ 1 \times \left(\frac{1}{x}\right) + \ln(x) \end{array} \right| = \times \left(1 + \ln(x)\right) - \times \ln(x) = \times \neq 0 \quad \text{an } (0, \infty)$$

$$\left[\begin{array}{c} 1 \times \left(\frac{1}{x}\right) + \ln(x) \\ \end{array} \right] = \left[\begin{array}{c} \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \end{array} \right] = \left[\begin{array}{c} \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \end{array} \right] = \left[\begin{array}{c} \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \end{array} \right] = \left[\begin{array}{c} \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \end{array} \right] = \left[\begin{array}{c} \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \end{array} \right] = \left[\begin{array}{c} \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \end{array} \right] = \left[\begin{array}{c} \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \end{array} \right] = \left[\begin{array}{c} \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \end{array} \right] = \left[\begin{array}{c} \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \end{array} \right] = \left[\begin{array}{c} \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \end{array} \right] = \left[\begin{array}{c} \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \end{array} \right] = \left[\begin{array}{c} \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \end{array} \right] = \left[\begin{array}{c} \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \end{array} \right] = \left[\begin{array}{c} \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \end{array} \right] = \left[\begin{array}{c} \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \end{array} \right] = \left[\begin{array}{c} \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \end{array} \right] = \left[\begin{array}{c} \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \end{array} \right] = \left[\begin{array}{c} \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \end{array} \right] = \left[\begin{array}{c} \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \end{array} \right] = \left[\begin{array}{c} \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \end{array} \right] = \left[\begin{array}{c} \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \end{array} \right] = \left[\begin{array}{c} \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \end{array} \right] = \left[\begin{array}{c} \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \end{array} \right] = \left[\begin{array}{c} \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \end{array} \right] = \left[\begin{array}{c} \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \end{array} \right] = \left[\begin{array}{c} \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \end{array} \right] = \left[\begin{array}{c} \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \end{array} \right] = \left[\begin{array}{c} \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \end{array} \right] = \left[\begin{array}{c} \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \end{array} \right] = \left[\begin{array}{c} \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \end{array} \right] = \left[\begin{array}{c} \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \times \left[\begin{array}{c} \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \times \left[\begin{array}{c} \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \times \left[\begin{array}{c} \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \times \left[\begin{array}{c} \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \times \left[\begin{array}{c} \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \times \left[\begin{array}{c} \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \times \left[\begin{array}{c} \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \times \left[\begin{array}{c} \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \times \left[\begin{array}{c} \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \times \left[\begin{array}{c} \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \times \left[\begin{array}{c} \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \times \left[\begin{array}{c} \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \times \left[\begin{array}{c} \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \times \left[\begin{array}{c} \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \times \left[\begin{array}{c} \times \left(1 + \ln(x)\right) - \times \ln(x) \\ \times \left[\begin{array}{c} \times \left(1 + \ln($$

(b)
$$g_1(x) = 5$$
, $g_2(x) = \sin(x)$, $g_3(x) = 10 - 7\sin(x)$

$$2.9. + 7.92 - 93 =$$

 $2.5 + 7.5m(7) - (10 - 7.5m(x)) = 0$

(In dependent)

(a) Verify that $y_1 = e^{-x}$ and $y_2 = e^x$ form a fundamental set of solutions of y'' - y = 0 on $(-\infty, \infty)$.

Show
$$y_i$$
 is a solution:

$$y_i = e^{-x}$$

$$y_i' = -e^{-x}$$

$$y_i'' = e^{-x}$$

$$y_i'' = e^{-x}$$

Show
$$y_2$$
 is a solution:

$$y_2 = e^{x}$$

$$y_2' = e^{x}$$

$$y_2'' = e^{x}$$

$$y_2'' = e^{x}$$

$$y_2'' = e^{x}$$

(b) Verify that $y_p = \frac{1}{8}e^{3x}$ forms a particular solution of $y'' - y = e^{3x}$.

$$y'' = \frac{3}{8}e^{3x}$$

$$y'' - y = \frac{9}{8}e^{3x} - \frac{1}{8}e^{3x}$$

$$= \frac{8}{8}e^{3x} - e^{3x}$$

(c) Use (a) and (b) to write the general solution of $y'' - y = e^{3x}$.

General Solution:
$$y=c_1e^{-x}+c_2e^{x}+\frac{1}{8}e^{3x}$$

(a)
$$y'' + y' - 12y = 0$$

$$m^2 + m - 12 = 0$$

 $(m + 4)(m - 3) = 0$

$$m=-y \mid m=3$$

$$\int \mathcal{O}$$
 (b) $y''' - 4y'' + 4y' = 0$

$$m^{3}-4m^{2}+4m=0$$

 $m(m^{2}-4m+4)=0$
 $m(m-2)(m-2)=0$

$$y = c_1 e^{0x} + c_2 e^{2x} + c_3 \times e^{2x}$$

 $y = c_1 + c_2 e^{2x} + c_3 \times e^{2x}$

(c)
$$y^{(4)} - 16y = 0$$

$$m^4 - 16 = 0$$

$$(m^2 - 4)(m^2 + 4) = 0$$

$$(m-2)(m+2)(m^2+4)=0$$

$$m=2$$
, $m=-2$ $m^2+4=0$ $m^2=-4$

$$m = \pm \sqrt{-y} = \pm 2\tilde{c}$$

$$m = 2(1, m = -2i)$$

 $\alpha = 0, \beta = 2$

$$\alpha = 0, \beta = 2$$

$$y = C_1 e^{2x} + C_2 e^{-2x} + e^{0x} \left[C_3 \sin(2x) + C_4 \cos(2x) \right]$$

$$y = C_1 e^{2x} + C_2 e^{-2x} + C_3 \sin(2x) + C_4 \cos(2x)$$

$$y'' + y' - 2y = 5e^x$$

Find ye: for y" +y' - 2y = 0:

$$m^2 + m - 2 = 0$$

 $(m+2)(m-1) = 0$
 $m = 2$, $m = 1$
 $y_c = C_1 R^{-2x} + C_2 R^{-2x}$

Find yp:

Looking at
$$g(x) = 5e^x$$
:

 $y_p = Ae^x$

we must adjust since $y_2 = e^x$:

 $y_p = A \times e^x$
 $y_p' = A \times e^x + Ae^x$
 $y_p'' = A \times e^x + 2Ae^x$
 $y_p'' = A \times e^x + 2Ae^x$
 $y'' + y' - 2y = 5e^x$ become s
 $A \times e^x + 2Ae^x + Axe^x + Ae^x - 2Axe^x = 5e^x$
 $3Ae^x = 5e^x$
 $3Ae = 5$
 $A - 5/3$

General Solution:
$$y = C_1 e^{-2x} + C_2 e^{x} + \sqrt{3} \times e^{x}$$