COMPLEX ANALYSIS PROBLEMS (MATH 400) SPRING 2013 UPDATED ON April 23, 2013

NATHAN REFF

Note: \blacklozenge problems are optional challenge problems.

(1) Compute and simplify to z = a + bi form (a) i^3 (b) i^{2013} (c) (3-2i) + (-1+6i)(d) $(1+i) - (2+\sqrt{2}i)$ (e) (-1+i)(4-i)(f) $(-1+i)^3$ (g) $(2-i)(\overline{1+i})$ (h) Re[$(-1+i)^3$] (i) Im[$(-1+i)^3$] (j) i/(1-i)(k) $(2-i)/(\overline{1+i})$ (2) Let $z_1 = 1 + 3i$, $z_2 = -1 - 2i$. (a) In the Complex plane, plot z_1 , z_2 , $z_1 + z_2$, $z_1 - z_2$, $z_1 z_2$ and z_1/z_2 . (b) Compute the following: (i) $|z_1|$ (ii) $|z_2|$ (iii) $|z_1 z_2|$ (iv) $|z_1 - z_2|$ (do this two different ways) (3) Compute and simplify to z = a + bi form (a) $\left| \frac{1}{1+i} \right|$ (b) $|(2 - i\sqrt{2})^{50}|$ (4) Describe and graph the set of points $z \in \mathbb{C}$ that satisfy the following. (a) $z = \overline{z}$ (b) $-z = \overline{z}$ (c) $\overline{z} = z^{-1}$ (d) |z - 2 + i| = 3(e) $\operatorname{Im}((1-i)z+2) = 0$ (f) |z - i| = |z + 1|(g) $|\overline{z}| = \operatorname{Im}(z)$ (h) $\operatorname{Re}(z\overline{z}) = 4$

(5) Compute the following.

(a) $\operatorname{Arg}(1)$ (b) $\arg(1)$ (c) $\operatorname{Arg}(3i)$ (d) $\arg(3i)$ (e) $\operatorname{Arg}(1 + \sqrt{3}i)$ (f) $\arg(1 + \sqrt{3}i)$ (g) $\operatorname{Arg}((1-i)^5)$ (6) Write the following complex numbers in z = a + bi form (a) $2\left[\cos\left(\frac{11\pi}{3}\right) + i\sin\left(\frac{11\pi}{3}\right)\right]$ (b) $\sqrt{5} \left[\cos \left(\frac{2\pi}{3} \right) + i \sin \left(\frac{2\pi}{3} \right) \right]$ (c) $10 \left[\cos \left(\frac{-\pi}{3} \right) + i \sin \left(\frac{-\pi}{3} \right) \right]$ (7) Write the following complex numbers in polar form $(z = r[\cos(\theta) +$ $i\sin(\theta)$]

(a)
$$\sqrt{3} - i$$

(b)
$$1 + \sqrt{3}i$$

(c)
$$2 - \sqrt{3} + i$$

- (8) Use your answers from (7) to help you write the following in polar form.
 - (a) $(\sqrt{3} i)^{100}$ (b) $(1 + \sqrt{3}i)^{2012}$ (c) $(2 - \sqrt{3} + i)^{216}$

(9) \blacklozenge Prove: For all $n \ge 1$, For all $z_1, z_2, \dots, z_n \in \mathbb{C}$, $\left| \sum_{j=1}^n z_j \right| \le \sum_{j=1}^n |z_j|$.

(10) Find and graph all roots in both a + bi and polar forms.

- (a) $(1)^{(1/5)}$ (b) $(-1)^{(1/4)}$
- (c) $(-1+i)^{(1/3)}$

(d)
$$(4i)^{(1/6)}$$

(11) The *n*th roots of unity are the *n* distint solutions to the equation $z^n = 1.$

(a) Show that the *n*th roots of unity are given by

$$(1)^{(1/n)} = \omega_k = \cos\left(\frac{2\pi k}{n}\right) + i\sin\left(\frac{2\pi k}{n}\right),$$

where k = 0, 1, ..., n - 1. Hint: Use your answer from (10a) to help.

- (b) \bigstar Let n > 1 be fixed. For which k can we obtain all of the nth roots of unity by taking powers of ω_k ? Hint: this should work for k = 1: $\omega_1, \, \omega_1^2, \, \omega_1^3, \ldots$ should give every ω_k , but are there other values of k that work as well? What is the relationship between k and n here?
- (c) \bigstar Let n > 1 be fixed. For the values of k where ω_k does not generate all of the roots of unity, how many of the roots are found by taking powers of ω_k ? Can you come up with a way to relate k and n and the number of generated roots? Draw some pictures and try this for various k and at least n = 2, 3, 4, 5, 6, and then think of the general situation.

(d) \blacklozenge Prove that $1 + \omega_1 + \omega_1^2 + \dots + \omega_1^{n-1} = 0$. Hint: Use $\omega_1^n = 1$. (12) Compute f(1), f(i) and f(1+i) for the following functions.

(a)
$$f(z) = z + (\overline{z})^{-1}$$
.
(b) $f(z) = z^2 - \operatorname{Re}(z)$

(c)
$$f(z) = \operatorname{Re}(z) - \operatorname{Im}(z)$$

(d) $f(z) = e^z$

(e)
$$f(z) = 3x - iy\overline{z}$$

- (13) Find the real and imaginary parts of the following functions and rewrite the functions in the form f(z) = u(x, y) + iv(x, y).
 - (a) $f(z) = z^2$

(b)
$$f(z) = z + z^{-1}$$

(c) $f(z) = e^{\overline{z}}$

(d)
$$f(z) = iz - \operatorname{Im}(z)|z|$$

(14) (a) Let
$$z = x + iy \in \mathbb{C}$$
. Show that $|e^z| = e^x$.
(b) \blacklozenge Let $z_1, z_2 \in \mathbb{C}$. Show that $e^{z_1 + z_2} = e^{z_1} e^{z_2}$.

- (15) Find the image of the following sets under the given complex function. Draw a picture of the set and its image (z-plane and w-plane pictures).
 - (a) w = f(z) = -iz and the set of $z \in \mathbb{C}$ such that Im(z) = -5. Note: this is the same function from class.
 - (b) w = f(z) = -iz and the set of $z \in \mathbb{C}$ such that Im(z) = 5. Note: this is the same function from class.
 - (c) w = f(z) = -iz and the set of $z \in \mathbb{C}$ such that -5 < Im(z) < 5. Note: this is the same function from class.
 - (d) w = f(z) = z + 3i and the set of $z \in \mathbb{C}$ such that x = y.
 - (e) w = f(z) = z + 3i and the set of $z \in \mathbb{C}$ such that |z 1| < 1.
 - (f) $w = f(z) = iz \overline{z}$ and the set of $z \in \mathbb{C}$ such that $\operatorname{Re}(z) + \operatorname{Im}(z) \ge 1$.

(16) Find the parametrization of the following curves:

(a) The line through 8 and 1 + i.

- (b) The line segment connecting -1 and 2-i.
- (c) The ray starting at -6i and going through 1 + 3i.
- (d) The circle of radius 4 centered at 2i oriented positively.
- (17) Find the image of the following curves under the given mapping (Hint: use the parametrizations from the previous problem).
 - (a) The line through 8 and 1 + i under $f(z) = e^{i\pi/3}z$.
 - (b) The line segment connecting -1 and 2-i under $f(z) = e^{i\pi/4}z 3i + 1$.
 - (c) The ray starting at -6i and going through 1 + 3i under f(z) = -z.
 - (d) The circle of radius 4 centered at 2i oriented positively under f(z) = 3z + i 1.
- (18) Classify the following functions as translations, rotations, magnifications or other?
 - (a) $f(z) = e^{i\pi/3}z$.
 - (b) $f(z) = \overline{z}$.
 - (c) $f(z) = \operatorname{Im}(z) + \operatorname{Re}(z)$.
 - (d) f(z) = -z.
 - (e) $f(z) = \sqrt{2}z$.

(f)
$$f(z) = 3z + i - 1$$
.

- (19) Show that the following functions $f : \mathbb{C} \to \mathbb{C}$ are NOT one-to-one (injective)
 - (a) $f(z) = z^2$. (b) $f(z) = z^5$.
- (20) Show that the following functions $f : \mathbb{C} \to \mathbb{C}$ are one-to-one (injective), and then find f^{-1} .
 - (a) $f(z) = z i\sqrt{3}$.
 - (b) f(z) = 4iz 2.

(21) Show that the following limits do not exist.

- (a) $\lim_{z \to 0} \frac{\operatorname{Re}(z)}{z}$ (b) $\lim_{z \to 0} \frac{\operatorname{Im}(z)^2 + 2}{3z^2}$
- (22) Evaluate $\lim_{z \to z_0} f(z)$ by writing f(z) = u(x, y) + iv(x, y) and computing the real limits.

(a)
$$\lim_{z \to 1-i} \left(\frac{x}{x^2 + y^2 + 1} + 2xyi \right)$$

(b)
$$\lim_{z \to i} \left(i|z|^2 - \operatorname{Re}(z)\operatorname{Im}(z) \right)$$

(c)
$$\lim_{z \to 0} \frac{|z|^2}{\overline{z}}$$

(d)
$$\lim_{z \to z_0} \operatorname{Re}(z)$$

(e) $\lim_{z \to z_0} \operatorname{Im}(z)$
(f) \bigstar Show: $\lim_{z \to z_0} c = c$, where $c \in \mathbb{C}$ is a constant.
(g) \bigstar Show: $\lim_{z \to z_0} z = z_0$.

(23) Show that the following functions are continuous at the given point. (a) $f(z) = z^2 - 4iz + 3$; $z_0 = 1 - i$. (b) $f(z) = z - \frac{1}{z}$; $z_0 = -2i$. (c) $f(z) = \frac{z^2}{1-z}$; $z_0 = -i$.

(24) Show that the following functions are discontinuous at the given point.

(a)
$$f(z) = z - \frac{1}{z}; z_0 = 0.$$

(b) $f(z) = \frac{z^2}{1+z^2}; z_0 = i.$

(25) Determine where the following functions are continuous

(a)
$$f(z) = \frac{z-2}{z^3 + i}$$

(b) $f(z) = \frac{x-1}{x-1}$
(c) $f(z) = \frac{2iz^2}{|z|+1}$
(d) $f(z) = \frac{2iz^2}{|z|-1}$

(26) Compute f'(z) using the limit definition of the derivative (a) f(z) = 2i

- (b) f(z) = 2i/z
- (27) Compute f'(z) using the derivative formulas
 (a) f(z) = 2i
 (b) f(z) = 2i/z

(c)
$$f(z) = (z^3 - 2\pi i)^{2013}$$

(28) Show that the following functions are nowhere differentiable (a) $f(z) = \overline{z}$

(b)
$$f(z) = 2ix + 4y$$

(c)
$$\blacklozenge f(z) = |z|$$

(29) Use the Cauchy-Riemann equations to help determine where the following functions are differentiable and evaluate the derivative (valid at those points where they exist).

(a)
$$f(z) = 2iz + 4 - iz$$

(b) $f(z) = x^2 + iy^2$

(c) $f(z) = 3x^3 + (y^2 + 2y)i$ (d) $f(z) = -\cos(x) + y\sin(x)i$ (e) $f(z) = |z + 1 - 2i|^2$ (f) $f(z) = \sin(x)\cosh(y) + i\cos(x)\sinh(y)$ (30) \bigstar Suppose f(z) and $\overline{f(z)}$ are both analytic on some domain D. Show that f(z) must be constant on D. (31) Which of the following functions are harmonic? (a) $h(x, y) = x^2 - y^2$ (b) $h(x, y) = \sin(x)e^{y}$ (c) $h(x, y) = x^3 - y$ (32) Compute (a) $\ln(-1-i)$ (b) Ln(-1-i)(c) $\ln(1 - \sqrt{3}i)$ (d) $Ln(1 - \sqrt{3}i)$ (e) $\ln(5)$ (f) Ln(5)(33) Find all $z \in \mathbb{C}$ that satisfy the given equation (a) $e^{z} = -i\pi$ (b) $\operatorname{Ln}(z+1) = 2\pi i$ (c) $e^{z^3} = 2i$ (34) Let $p(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$, where a_0, a_1, \dots, a_n are real constants (a complex polynomial with real coefficients). Show that if p(z) = 0, then $p(\overline{z}) = 0$. (35) Differentiate the following (a) $\text{Ln}(z^3 + 1)$ (b) $e^{4\pi i z}$ (c) $\sin(e^z)$ (d) $\cos(z^2 + \cosh(z))$ (36) Find the principal value of the following (a) i^{2i} (b) $(1-i)^i$ (37) Find all $z \in \mathbb{C}$ that satisfy the given equation (a) $\cos(z) = i$ (38) Use a parametrization of C to evaluate the following (a) $\int_C x dz$, where C is the line segment from 0 to 2*i*. (b) $\int_C x dz$, where C is right half of the circle |z - i| = 1, oriented counterclockwise.

(c)
$$\oint_C xdz$$
, where C is $|z - i| = 1$.
(d) $\int_C ydz$, where C is the line segment from 0 to 2*i*.
(e) $\oint_C \frac{1}{z}dz$, where C is $|z| = 10$.

(39) Use the Cauchy-Goursat Theorem, Annulus Theorem (Deformation of Contour Theorem), and Generalized Deformation of Contours Theorem (Cauchy-Goursat Theorem for Multiply Connected Domains) to evaluate the following

(a)
$$\oint_C \frac{z-1}{z} dz$$
, where C is $|z-i| = 1/2$.
(b) $\oint_C \frac{z-1}{z} dz$, where C is $|z-i| = 5$.
(c) $\oint_C \frac{1}{z^2+1} dz$, where C is $|z| = 1/2$.

(d)
$$\oint_C \frac{1}{z^2+1} dz$$
, where C is $|z| = 2$.

(e) $\oint_C \frac{1}{z^2 + 1} dz$, where C is $|z - i| = 1/\pi$.

(f)
$$\oint_C \frac{1}{z^2 + i} dz$$
, where C is $|z| = 2$.

- (g) $\oint_C e^z dz$, where C is any simple closed curve in the complex plane that traces out the shape of a Clover \clubsuit .
- (40) Compute the integral $\int_C (7z e^z) dz$, where C is upper half of the circle |z| = 1, oriented clockwise, in the following 3 ways (a) Parametrize C.
 - (b) Use a different curve C'.
 - (c) Use the Fundamental Theorem for Contour Integrals.
- (41) Evaluate the following using the Fundamental Theorem for Contour Integrals.
 - (a) $\int_C e^z dz$, where C is the line segment from -1 to *i*.
 - (b) $\int_C \sin(4z)dz$, where C is the line segment from 2i to 3i.
 - (c) $\int_C \cos^2(2z) dz$, where C is the line segment from 0 to $\pi/2$.
 - (d) $\int_C \cosh(2z) dz$, where C is the line segment from 0 to πi .
- (42) Evaluate the following using Cauchy's integral formula.

(a)
$$\oint_C \frac{e^z}{z-5} dz$$
, where *C* is $|z-1| = 10$.
(b) $\oint_C \frac{1}{z^2+1} dz$, where *C* is $|z| = 1/2$.
(c) $\oint_C \frac{1}{z^2+1} dz$, where *C* is $|z| = 2$.
(d) $\oint_C \frac{1}{z^2+1} dz$, where *C* is $|z-i| = 1/\pi$.
(e) $\oint_C \frac{1}{z^4-1} dz$, where *C* is $|z| = 2$.
(f) $\oint_C \frac{1}{z^n-1} dz$, where *C* is $|z| = 2$.

(43) Evaluate the following using Cauchy's integral formula.

(a)
$$\oint_C \frac{e^z}{(z-2)^3} dz$$
, where C is $|z| = 4$.
(b) $\oint_C \frac{1}{z \sin(z)} dz$, where C is $|z| = 1$.
(c) $\oint_C \frac{\cosh(z)}{z^4} dz$, where C is $|z| = 1$.
(d) $\oint_C \frac{1}{z^2(z^2-1)} dz$, where C is $|z| = 2$.

(44) Find the radius of convergence for the following power series

(a)
$$\sum_{n=0}^{\infty} \frac{z^n}{2n+1}$$
.
(b) $\sum_{n=0}^{\infty} \frac{(z-2i)^n}{(2n)!}$.

(45) Find the Maclaurin series representation for the following functions and find the radius of convergence of the representation. Hint: use any of the Maclaurin series from class.

(a)
$$e^{z^2}$$

(b) $\sin(z^2)$
(c) $\frac{1}{1+z^3}$.
(d) $\cosh(z)$.
(e) $\frac{1}{(1-z)^2}$.
(f) $\operatorname{Ln}(1+z)$.

(46) Find the Laurent series representation for the following functions valid on the given annular domain.

(a)
$$\frac{e^z}{z^2}, |z| > 0.$$

(b)
$$\frac{1+z-e^z}{z}$$
, $|z| > 0$.
(c) $\frac{\sin(z)-z}{z^3}$, $|z| > 0$.
(d) e^{1/z^2} , $|z| > 0$.
(e) $\frac{1}{z(z+i)}$, $0 < |z| < 1$.
(f) $\frac{1}{z(z+i)}$, $|z| > 1$.
(g) $\frac{1}{z(z+i)}$, $0 < |z+i| < 1$.
(h) $\frac{1}{z(z+i)}$, $|z+i| > 1$.

(47) Determine the zeros and their order for the given functions.

- (a) $(2i z)^5$. (b) $\cos(z)$ (c) $(z \cos(z))^2$. (d) $\sin(z)(\cos(z) - 1)$.
- (48) Classify the singularities for the given functions (state for each singularity if it is removable, simple, a pole of order n, or essential).

(a)
$$\frac{1}{z(z-3i)^4}$$
.
(b) $\frac{1}{(z^2+1)^3}$.
(c) $\frac{1}{\cos(z)-1}$
(d) $\frac{\sin(z)}{z^{12}}$.
(e) $\frac{e^{1/z}}{z^{12}}$.
(f) $\frac{z-5}{(z-i)^2(z+i)^7}$.
(g) $\frac{\sin(z)}{ze^z-z}$

(49) Evaluate the following using Cauchy's Residue Theorem. l

(a)
$$\oint_C \frac{1}{z^2 + 1} dz$$
, where C is $|z| = 2$.
(b) $\oint_C \frac{\cos(2z) - 1}{z^3} dz$, where C is $|z| = 1$.
(c) $\oint_C \frac{e^z}{z^5} dz$, where C is $|z| = 1$.
(d) $\oint_C \frac{1}{1 - e^z} dz$, where C is $|z| = 1$.

(e)
$$\oint_C \frac{1}{z^2(z-3i)} dz$$
, where *C* is $|z| = 4$.
(f)
$$\oint_C \frac{1}{z^2(z-3i)} dz$$
, where *C* is $|z| = 1$.
(g)
$$\oint_C \frac{1}{z \sin^2(z)} dz$$
, where *C* is $|z| = 3$.
(h)
$$\oint_C \cos(2/z) dz$$
, where *C* is $|z| = 1$.
(i)
$$\oint_C ze^{\pi/z^2} dz$$
, where *C* is $|z| = 1$.
(j)
$$\oint_C \frac{\operatorname{Ln}(z)}{\cos(z)} dz$$
, where *C* is $|z - \pi/2| = 1/2$.
(k)
$$\oint_C \frac{1}{z^n \sin(z)} dz$$
, where *C* is $|z| = 1$ and $n \in \mathbb{Z}$ with $n \ge 1$.
(50) Evaluate.

(a)
$$\int_{0}^{2\pi} \frac{1}{1 - \cos(x)} dx$$

(b)
$$\int_{-\infty}^{\infty} \frac{x - 1}{x^4 + 1} dx$$

(c)
$$\int_{-\infty}^{\infty} \frac{\sin(x)}{x^4 + 1} dx$$

(d)
$$\int_{-\infty}^{\infty} \frac{1}{x(x^2 + 4)} dx$$

(e)
$$\int_{-\infty}^{\infty} \frac{\cos(x)}{x(x^2 + 4)} dx$$

(f)
$$\oint_{-\infty}^{\infty} \frac{\cos(x)}{x^n - 1} dx$$

Division of Mathematics, Alfred University, Alfred, NY 14802, U.S.A. $E\text{-mail}\ address: \texttt{reff@alfred.edu}$