Math 324

Exam 2 will cover section 4.1-4.5,4.7,4.8 and 8.1. Some fundamental topics are listed below:

- 1. Closure under vector addition, Closure under scalar multiplication.
- 2. Vector Spaces (\mathbb{R}^n , P_n , M_{mn} , \mathbb{R}^∞ , $P_\infty = \mathbb{R}[x]$, $F(-\infty, \infty)$, etc.)
- 3. Subspaces (how to show W is a subspace of V)
- 4. Geometry of subspaces in \mathbb{R}^n .
- 5. Linear combinations
- 6. Span
- 7. Linear Independence/Dependence
- 8. Basis (you should know the standard basis of \mathbb{R}^n , P_n , M_{mn} , but also how to show something is a basis, especially in \mathbb{R}^n .)
- 9. Dimension
- 10. Finite Dimensional vs. Infinite Dimensional Vector Spaces
- 11. Coordinate vectors
- 12. The fundamental subspaces associate to a matrix A: Null(A), Row(A), Col(A), $Null(A^T)$:
 - (a) What are they
 - (b) How to find a basis for each of these subspaces
 - (c) Compute the dimension of each. What is rank(A)? What is nullity(A)?
 - (d) Rank-Nullity Theorem
 - (e) Orthogonal Complements
 - (f) Basis for the Span(S) if $S = {\mathbf{x}_1, \dots, \mathbf{x}_n}$.
 - (g) Good idea to see the extended list of Equivalent Statements so far (see page 245), but you do not need to have this memorized.
- 13. Linear Transformations
 - (a) Show $T: V \to W$ is a linear transformation
 - (b) If $T : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, find the associated matrix [T].
 - (c) Find $\ker(T)$
 - (d) Find range(T) (the image im(T))
 - (e) What is rank(T)? What is nullity(T)?
 - (f) Rank-Nullity Theorem