EXAM 1

Score: _____ out of 100

Math 324 - Linear Algebra

Name:

Read all of the following information before starting the exam:

- You have 50 minutes to complete the exam.
- Show all work, clearly and in order, if you want to get full credit. Please make sure you read the directions for each problem. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Please box/circle or otherwise indicate your final answers.
- Please keep your written answers brief; be clear and to the point. I will take points off for rambling and for incorrect or irrelevant statements.
- This test has 8 problems and is worth 100 points. It is your responsibility to make sure that you have all of the pages!
- Good luck!

- 1. Circle your answer for each of the following:
 - (a) | True | False | A homogeneous linear system is always be consistent.
 - (b) | True | False | A linear system may have exactly 5 solutions.
 - (c) True False If A is a 4×7 matrix and B is a 7×7 matrix, then BA exsits.
 - (d) True False If B has a column of zeros, then so does AB (if this product is defined).
 - (e) True False If A is an $n \times n$ matrix, then tr(5A) = 5tr(A).
 - (f) True False If A is invertible, then so is A^{T} .
 - (g) True False The sum of two invertible matrix of the same size must be invertible.
 - (h) | True | False | Every elementary matrix is invertible.
 - (i) True False If A is an $n \times n$ matrix, then $\det(A^2) = (\det(A))^2$.
 - (j) If A is a 3×3 invertible matrix then det(3A) = 3 det(A) + 9 det(A) + 27 det(A)
- 2. (a) Show that $\begin{bmatrix} 1 & 2 & 3 & 2 \\ 1 & 3 & -4 & 1 \\ -1 & -5 & -1 & 1 \end{bmatrix}$ has reduced row echelon (RREF) form $\begin{bmatrix} 1 & 0 & 0 & 4 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$. You must show each step of your work for full credit.

(b) Use part (a) to find the solution of the system:

x_1	+	$2x_2$	+	$3x_3$	+	$2x_4$	=	0
x_1	+	$3x_2$	—	$4x_3$	+	x_4	=	0
$-x_1$	_	$5x_2$	_	x_3	+	x_4	=	0

3. Let $A = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}, B = \begin{bmatrix} 0 & 1 \\ 0 & -3 \end{bmatrix}$	
Compute each of the following, or explain/show why it is NOT possible to compute.	
(a) A^{T}	
(b) $A + 3B$	
(c) AB	
(d) BA	
(e) $\operatorname{tr}(A)$	
(f) $\det(A)$	
(g) A^{-1}	
(h) $\det(B)$	
(i) B^{-1}	

4. Let
$$A = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & -3 & 1 \end{bmatrix}$$

(a) Compute A^{-1} .

•

(b) Use the A^{-1} computed in part (a) to solve the equation

$$A\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix} = \begin{bmatrix} 1\\-1\\1\end{bmatrix}$$

5. Compute the following determinant: $\begin{bmatrix} 0 & 3 & 0 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	5 Commute the following determine	$\begin{vmatrix} 2\\ 2 \end{vmatrix}$	0 0	$\frac{2}{6}$	$-1 \\ -1$
	5. Compute the following determined	nant: $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	3	0	3

6. Let
$$A = \begin{bmatrix} 3 & 1 & -4 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 5 & 0 & 0 \\ 3 & 1 & 0 \\ 4 & -5 & 1 \end{bmatrix}$
(a) det $(A) =$
(b) det $(B) =$

For the remaining parts you may not calculate the matrices involved, and should use your answers from parts (a) and (b):

For the following two problems 0 will be used to denote the zero matrix.

7. Show that if $A^5 - 2A^2 + A - I = 0$, then A^{-1} exists and $A^{-1} = A^4 - 2A + I$

8. Show that if $A^2 = \mathbf{0}$, then A is not invertible.