EXAM 3

Score: _____ out of 100

Math 324 - Linear Algebra

Name:

Read all of the following information before starting the exam:

- You have 50 minutes to complete the exam.
- Show all work, clearly and in order, if you want to get full credit. Please make sure you read the directions for each problem. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Please box/circle or otherwise indicate your final answers.
- Please keep your written answers brief; be clear and to the point. I will take points off for rambling and for incorrect or irrelevant statements.
- This test has 7 problems and is worth 100 points. It is your responsibility to make sure that you have all of the pages!
- Good luck!

- 1. Circle your answer for each of the following:
 - (a) True False P_n is isomorphic to \mathbb{R}^n .
 - (b) True False M_{mn} is isomorphic to \mathbb{R}^{mn} .
 - (c) True False There is a subspace of P_8 isomorphic to M_{22} .
 - (d) True False If V is a finite dimensional vector space and $T: V \to V$ is an isomorphism, then $\ker(T) = \{\mathbf{0}\}.$
 - (e) True False Every linear transformation $T: M_{22} \to \mathbb{R}^4$ is an isomorphism.
 - (f) True False If V and W are finite dimensional and isomorphic vector spaces, then $\dim(V) = \dim(W)$.
 - (g) True False $\begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}$ and $\begin{bmatrix} 3 & 1 \\ -1 & 0 \end{bmatrix}$ are similar matrices.
 - (h) True False If A is a 3×3 matrix with three eigenvalues $\lambda_1 = 1$, $\lambda_2 = 5$ and $\lambda_3 = 15$, then A is diagonalizable.
 - (i) True False If A is a 3×3 matrix with three eigenvalues $\lambda_1 = 1$, $\lambda_2 = 5$ and $\lambda_3 = 15$, then A is invertible.
 - (j) True False A 3×3 matrix with real entries must always have at least one real eigenvalue.

2. Find the eigenvalues of
$$A = \begin{bmatrix} 1 & 3 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$
.

3. Suppose the the graph of characteristic polynomial of an 3×3 matrix A is given below.

Circle your answer for each of the following:

(a) Is A invertible? Yes No Not Enough Information Explain your choice:

(b) Is A diagonalizable? Yes No Not Enough Information **Explain your choice:**

4. Suppose the characteristic polynomial of a square matrix A is:

$$p(\lambda) = \lambda(\lambda - 1)^2(\lambda + 2)^3$$

(a) Fill in the following table:		
Eigenvalues of A	Algebraic Multiplicity	Possible Geometric Multiplicities
(b) Is A invertible? Circle your choice: Yes No Not Enough Information		
(c) Is A diagonalizable? Circle your choice: Yes No Not Enough Information		
(d) $\operatorname{tr}(A) =$		
(e) $\det(A) =$		
(f) What is the size of th	e matrix A?	

5. Let
$$A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

(a) Find the eigenvalues of A .

(b) For each eigenvalue from part (a), find a basis for the corresponding eigenspace.

(c) Show that A is diagonalizable by stating a diagonalizing matrix P and diagonal matrix D so that $A = PDP^{-1}$. There is no need to check the last equality, just state what P and D are.

P =

D =

6. Let $T : \mathbb{R}^3 \to P_2$ defined by

$$T\left(\left[\begin{array}{c}a_{0}\\a_{1}\\a_{2}\end{array}\right]\right) = (a_{0} - a_{1}) + (a_{1} - a_{2})x + (a_{2} - a_{0})x^{2}.$$

(a) Find $[T]_{\mathcal{B}',\mathcal{B}}$ if \mathcal{B} and \mathcal{B}' are the standard bases (i.e., $\mathcal{B} = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$ and $\mathcal{B}' = \{1, x, x^2\}$)

(b) Is T one-to-one (an injection)? Yes No **Proof:**

(c) Is T an isomorphism? Yes No **Proof:**

7. Prove that if A and B are similar matrices, then A^3 and B^3 are also similar matrices.