EXAM 3

Name:

Score:	out of 100
tey	\supset

Math 324 - Linear Algebra

Read all of the following information before starting the exam:

- You have 50 minutes to complete the exam.
- Show all work, clearly and in order, if you want to get full credit. Please make sure you read the directions for each problem. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Please box/circle or otherwise indicate your final answers.
- Please keep your written answers brief; be clear and to the point. I will take points off for rambling and for incorrect or irrelevant statements.
- This test has 7 problems and is worth 100 points. It is your responsibility to make sure that you have all of the pages!
- Good luck!

- 1. Circle your answer for each of the following: (a) True (False) P_n is isomorphic to \mathbb{R}^n . (P_n is isomorphic to \mathbb{R}^{n+1})
 - (b) True False M_{mn} is isomorphic to \mathbb{R}^{mn} .
 - (Any 4 dimensional subspace will be isomorphic to MZZ) (c) True False There is a subspace of P_8 isomorphic to M_{22} .
 - (d) True False If V is a finite dimensional vector space and $T: V \to V$ is an isomorphism, then $\ker(T) = \{0\}.$
 - (e) True False Every linear transformation $T: M_{22} \to \mathbb{R}^4$ is an isomorphism.
 - (f) True False If V and W are finite dimensional and isomorphic vector spaces, then $\dim(V)'=$
 - (g) True False $\begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}$ and $\begin{bmatrix} 3 & 1 \\ -1 & 0 \end{bmatrix}$ are similar matrices. (determinants are not equal. Here, they cannot possibly be (h) True) False If A is a 3×3 matrix with three eigenvalues $\lambda_1 = 1$, $\lambda_2 = 5$ and $\lambda_3 = 15$, then
 - A is diagonalizable.
 - (i) True False If A is a 3×3 matrix with three eigenvalues $\lambda_1 = 1$, $\lambda_2 = 5$ and $\lambda_3 = 15$, then
 - (j) True False A 3×3 matrix with real entries must always have at least one real eigenvalue.
- 2. Find the eigenvalues of $A = \begin{bmatrix} 1 & 3 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 4 \end{bmatrix}$

G characteristic polynamial is a cubic which mist always have at least one real root because complex roots come in conjugate pairs (also by the internediate traine

Find roots of the characteristic equation

$$\begin{vmatrix} 1-\lambda & 3 & 0 \\ 3 & 1-\lambda & 0 \end{vmatrix} = (+)(4-\lambda) \begin{vmatrix} 1-\lambda & 3 \\ 3 & 1-\lambda \end{vmatrix} = 0$$

$$= (4-\lambda) ((1-\lambda)(1-\lambda)-9) = 0$$

$$= (4-\lambda) (1-2\lambda + \lambda^2 - 9) = 0$$

$$= (4-\lambda) (\lambda^2 - 2\lambda - 8) = 0$$

$$= (4-\lambda) (\lambda - 4)(\lambda + 2) = 0$$

$$\lambda = 4 \begin{vmatrix} \lambda = 4 \\ \lambda = -2 \end{vmatrix}$$

3. Suppose the the graph of characteristic polynomial of an 3×3 matrix A is given below.

Circle your answer for each of the following:

(a) Is A invertible? Yes No Not Enough Information Explain your choice:

> The characteristic polynomial does <u>NOT</u> pass through the origin, Iterae, O is <u>NOT</u> an eigenvalue. Therefore, A 15 invertible.

(b) Is A diagonalizable? Yes No Not Enough Information Explain your choice:

> The characteristic polynomial has 3 distinct roots. Hrne, A has 3 distinct eigenvalues. Since A is 3x3, A is diagonalizable.

4. Suppose the characteristic polynomial of a square matrix A is:

$$p(\lambda) = \lambda(\lambda - 1)^2(\lambda + 2)^3$$

(a) Fill in the following table:

Eigenvalues of A	Algebraic Multiplicity	Possible Geometric Multiplicities
0	1	
- t	2	1,2
-2	3	1,2,3

- (b) Is A invertible? Circle your choice: Yes (No) Not Enough Information
- (c) Is A diagonalizable? Circle your choice: Yes No Not Enough Information

(d)
$$tr(A) = \begin{bmatrix} -4 \\ -2 \end{bmatrix} = 0 + 1 + 1 + (-2)$$

det (A) = 0.

= 0.1.1.(-2).(-2).(-2) (product of eigenvalues including multiplicatives

of the matrix A? 6×6

A is NOT invertible to conclude (f) What is the size of the matrix A?

5. Let
$$A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

(a) Find the eigenvalues of A.

SOLVE!
$$\det (A - \lambda I) = 0$$

$$\begin{vmatrix} 1 - \lambda & -1 \\ -1 & 1 - \lambda \end{vmatrix} = 0$$

$$(1 - \lambda)(1 - \lambda) - (-1)(-1) = 0$$

$$1 - 2\lambda + \lambda^2 - 1 = 0$$

$$-2\lambda + \lambda^2 = 0$$

$$\lambda(-2 + \lambda) = 0$$

$$\lambda = 0$$

$$\lambda = 0$$

(b) For each eigenvalue from part (a), find a basis for the corresponding eigenspace.

For
$$\lambda=0$$
 (The corresponding eigenspace is NUII (A - OI) = NUII (A).)
$$\begin{bmatrix}
1-0 & -1 & | & 0 \\
-1 & 1-0 & | & 0
\end{bmatrix} = \begin{bmatrix}
1 & -1 & | & 0 \\
-1 & 1 & | & 0
\end{bmatrix}$$

$$\begin{bmatrix}
R2 \rightarrow R2+R1 \\
0 & 0 & | & 0
\end{bmatrix}$$

$$\begin{bmatrix}
X_1 = X_2 = S \\
X_2 = S
\end{bmatrix}$$

$$\begin{bmatrix}
X_1 = S \\
X_2 = S
\end{bmatrix} = S \begin{bmatrix}
1 \\
1
\end{bmatrix}$$

$$\underbrace{Basis}! \quad \underbrace{S}[1] \underbrace{S}_{1} = S$$

For
$$A=2$$
 (The corresponding eigens pace is NULL $(A-2I)$)
$$\begin{bmatrix} 1-2 & -1 & | & 0 \\ -1 & 1-2 & | & 0 \end{bmatrix} = \begin{bmatrix} -1 & -1 & | & 0 \\ -1 & -1 & | & 0 \end{bmatrix} \xrightarrow{R1 \rightarrow -R1} \begin{bmatrix} 1 & 1 & | & 0 \\ -1 & -1 & | & 0 \end{bmatrix} \xrightarrow{R2 \rightarrow R2 + R1} \begin{bmatrix} 1 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}$$

$$x_1 = -x_2 = -s$$

$$x_2 = s$$

$$\begin{cases} x_1 \\ x_2 = s \end{cases} \begin{cases} x_1 \\ x_2 \end{cases} = s \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$\begin{cases} x_1 \\ x_2 \end{cases} = s \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

(c) Show that A is diagonalizable by stating a diagonalizing matrix P and diagonal matrix D so that $A = PDP^{-1}$. There is no need to check the last equality, just state what P and D are

$$P = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

$$D = \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix}$$

6. Let $T: \mathbb{R}^3 \to P_2$ defined by

$$T\left(\left[\begin{array}{c} a_0 \\ a_1 \\ a_2 \end{array}\right]\right) = (a_0 - a_1) + (a_1 - a_2)x + (a_2 - a_0)x^2.$$

(a) Find $[T]_{\mathcal{B}',\mathcal{B}}$ if \mathcal{B} and \mathcal{B}' are the standard bases (i.e., $\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$ and $\mathcal{B}' = \{1, x, x^2\}$)

$$\begin{bmatrix} \tau \end{bmatrix}_{B',B} = \begin{bmatrix} \tau([:]) \end{bmatrix}_{B'} \begin{bmatrix} \tau([:]) \end{bmatrix}_{B'} \begin{bmatrix} \tau([:]) \end{bmatrix}_{B'} \end{bmatrix}$$

$$= \begin{bmatrix} 1 - 1 \times^2 \end{bmatrix}_{B'} \begin{bmatrix} -1 + x \end{bmatrix}_{B'} \begin{bmatrix} -x + x^2 \end{bmatrix}_{B'} \end{bmatrix}$$

$$= \begin{bmatrix} 1 - 1 & \bullet \\ \bullet & 1 & -1 \\ -1 & \bullet & 1 \end{bmatrix}$$

(b) Is
$$T$$
 one-to-one (an injection)? Yes No

Proof:

$$T([!]) = 0$$

hence $[!] \in \text{Ker}(T)$

So, T is NoT

One-to one $[!] \in \text{Ker}(T)$

Figure $[!] \in \text{Ker}(T)$

So, $[T] : NoT$

One-to one $[!] \in \text{Ker}(T)$

Figure $[!] \in \text{Ker}(T)$

So, $[T] : NoT$

One-to one $[!] \in \text{Ker}(T)$

Figure $[!] \in \text{Ker}(T)$

So, $[T] : NoT$
 $[!] \in \text{Not}$
 $[!] : NoT$

So Not five $[t] : NoT$

S

From (b), Since Tis NOT

One-to-one it is

NOT an
isomorphism.

Show the modrix in (a)
is NOT
invertible.

Many more solutions as well ...

7. Prove that if A and B are similar matrices, then A^3 and B^3 are also similar matrices.

proof.

suppose A and B are similar matrices. There exists an invarible P such that $A = P^{-1}BP$.

Hence, A3 ma B3 are also similar matrices