Math 425 - Normal Subgroups/Factor Groups Spring 2015

- 1. Consider the group $G = \mathbb{Z}$ and the subgroup $H = 4\mathbb{Z}$
 - (a) Prove that $4\mathbb{Z}$ is a normal subgroup of \mathbb{Z} . That is, $4\mathbb{Z} \triangleleft \mathbb{Z}$.
 - (b) Write out a Cayley table for the factor group $\mathbb{Z}/4\mathbb{Z}$.
 - (c) Show that $\mathbb{Z}/4\mathbb{Z}$ is cyclic.
 - (d) Show that $\mathbb{Z}/4\mathbb{Z} \cong \mathbb{Z}_4$ (Hint: there are two ways to solve this problem, one is to use part (b) and the other is to use part (c)).
- 2. Consider $\langle 5 \rangle \leq U(12)$
 - (a) Prove that $\langle 5 \rangle \lhd U(12)$
 - (b) Write out a Cayley table for the factor group $U(12)/\langle 5 \rangle$
 - (c) Is U(12) cyclic?
 - (d) Is $U(12)/\langle 5 \rangle$ cyclic?
 - (e) Prove or disprove: $U(12)/\langle 5 \rangle \cong \mathbb{Z}_2$
- 3. Consider $H = \left\{ \begin{bmatrix} a & b \\ 0 & d \end{bmatrix} \mid a, b, d \in \mathbb{R}, ad \neq 0 \right\}$
 - (a) Prove that $H \leq GL_2(\mathbb{R})$.
 - (b) Prove that H is not a normal subgroup of $GL_2(\mathbb{R})$.

(c) Consider
$$S = \left\{ \begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix} \mid x \in \mathbb{R} \right\}$$
. Show that $S \leq H$.

- (e) Prove that $S \triangleleft H$.
- (f) \blacklozenge Optional Challenge: Prove that H/S is abelian. This problem is connected to Ch. 10#7. Can you answer that question as well?

⁽d) Is S abelian?