Comments


Membership vs. Subset

Let $A$ and $B$ be sets whose elements come from some set $X$.
  • $x\in A$ means $x$ is an element (or member) of $A$.
  • $x\notin A$ means $x$ is not an element of $A$.
  • $A\subseteq B$ means $A$ is a subset of $B$; that is, if $x\in A$, then $x\in B$.
    Formally written: $\forall x\in X,$ if $x\in A$, then $x\in B$.
  • $A\not\subseteq B$ means $A$ is not a subset of $B$.
    Formally written: $\exists x\in X$ such that, $x\in A$ and $x\notin B$. (N.B. You should agree with this definition, see Section 3.3 on Negations.)

  • Examples using the symbols '$\in$' and '$\notin$':
  • $1\in \{1\}$.
  • $3\notin \{1\}$.
  • $1\in \{1,2\}$.
  • $1\in \mathbb{N}$.
  • $0\notin \mathbb{N}$.
  • $0\in \mathbb{Z}_{\geq 0}$.
  • $\spadesuit\in \{\heartsuit, \spadesuit, \diamondsuit, \clubsuit\}$.
  • $\omega\notin \{\heartsuit, \spadesuit, \diamondsuit, \clubsuit\}$.
  • $\{0\}\in \{\{0\},\heartsuit\}$.
  • $0\notin \{\{0\},\heartsuit\}$.
  • $1\notin \varnothing$.
  • $\varnothing\notin \varnothing$.
  • $\varnothing\in \{\varnothing\}$.
  • $\{\varnothing\}\notin \{\varnothing\}$.
  • $\varnothing\in \{\varnothing,\{\varnothing\}\}$.
  • $\{\varnothing\}\in \{\varnothing,\{\varnothing\}\}$.

  • Examples using the symbol '$\subseteq$' and '$\not\subseteq$':
  • $\{1\}\subseteq \{1\}$.
  • $\{3\}\not\subseteq \{1\}$. (This is because there exists an element of $\{3\}$, namely $3$, that is not an element of $\{1\}$.)
  • $\{1\}\subseteq \{1,2\}$.
  • $\{1\}\subseteq \mathbb{N}$.
  • $\{0\}\not\subseteq \mathbb{N}$.
  • $\{0\}\subseteq \mathbb{Z}_{\geq 0}$.
  • $\{\spadesuit\}\subseteq \{\heartsuit, \spadesuit, \diamondsuit, \clubsuit\}$.
  • $\{\omega\}\not\subseteq \{\heartsuit, \spadesuit, \diamondsuit, \clubsuit\}$.
  • $\{\{0\}\}\subseteq \{\{0\},\heartsuit\}$.
  • $\{0\}\not\subseteq \{\{0\},\heartsuit\}$.
  • $\{1\}\not\subseteq \varnothing$.
  • $\varnothing\subseteq \varnothing$.
  • Proposition 5.7. For any set $A$, $\varnothing\subseteq A$.
  • $\varnothing\subseteq \{\varnothing\}$.
  • $\{\varnothing\}\subseteq \{\varnothing\}$.
  • $\varnothing\subseteq \{\varnothing,\{\varnothing\}\}$.
  • $\{\varnothing\}\subseteq \{\varnothing,\{\varnothing\}\}$.
  • $\{\{\varnothing\}\}\subseteq \{\varnothing,\{\varnothing\}\}$.
  • $\{\{\{\varnothing\}\}\}\not\subseteq \{\varnothing,\{\varnothing\}\}$.



  • Powered by MathJax