Examples using the symbol '$\subseteq$' and '$\not\subseteq$':
$\{1\}\subseteq \{1\}$.
$\{3\}\not\subseteq \{1\}$. (This is because there exists an element of $\{3\}$, namely $3$, that is not an element of $\{1\}$.)
$\{1\}\subseteq \{1,2\}$.
$\{1\}\subseteq \mathbb{N}$.
$\{0\}\not\subseteq \mathbb{N}$.
$\{0\}\subseteq \mathbb{Z}_{\geq 0}$.
$\{\spadesuit\}\subseteq \{\heartsuit, \spadesuit, \diamondsuit, \clubsuit\}$.
$\{\omega\}\not\subseteq \{\heartsuit, \spadesuit, \diamondsuit, \clubsuit\}$.
$\{\{0\}\}\subseteq \{\{0\},\heartsuit\}$.
$\{0\}\not\subseteq \{\{0\},\heartsuit\}$.
$\{1\}\not\subseteq \varnothing$.
$\varnothing\subseteq \varnothing$.
Proposition 5.7. For any set $A$, $\varnothing\subseteq A$.
$\varnothing\subseteq \{\varnothing\}$.
$\{\varnothing\}\subseteq \{\varnothing\}$.
$\varnothing\subseteq \{\varnothing,\{\varnothing\}\}$.
$\{\varnothing\}\subseteq \{\varnothing,\{\varnothing\}\}$.
$\{\{\varnothing\}\}\subseteq \{\varnothing,\{\varnothing\}\}$.
$\{\{\{\varnothing\}\}\}\not\subseteq \{\varnothing,\{\varnothing\}\}$.
|