Math 371 - Ordinary Differential Equations

Nate Reff

August 30, 2011

Definition of a Differential Equation

Definition

A differential equation (DE) is an equation containing derivatives of one or more dependent variables with respect to one or more independent variables

Examples:

1
$$\frac{dy}{dx} = 5y,$$

2
$$\frac{d^2y}{dx^2} + x\frac{dy}{dx} = 10,$$

3
$$y'' - 2yx = 0.$$

4
$$\frac{dx}{dt} + \frac{dy}{dt} = xy.$$

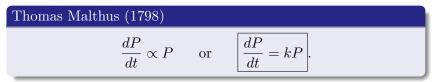
Types of Differential Equations

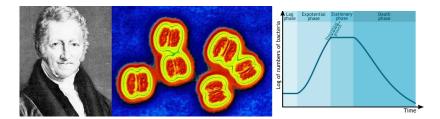
Definition

An ordinary differential equation (ODE) is an equation that only contains ordinary derivatives of one or more dependent variables with respect to a single independent variable.

Examples: All of the previous examples are ODEs.

Definition

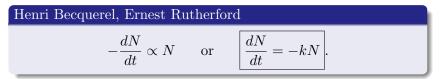

A partial differential equation (PDE) is an equation involving the partial derivatives of one or more dependent variables of two or more independent variables.

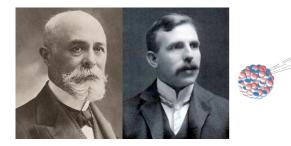

Example:
$$\frac{\partial u}{\partial x} + \frac{\partial^2 u}{\partial y^2} = 0.$$
 (Math 471)

Math 371 - Differential Equations $_{\odot \odot \odot \odot \odot \odot \odot}$

Example 1 - Population Growth

$$P(t) =$$
total population at time t .





Math 371 - Differential Equations $_{\odot \odot \odot \odot \odot \odot \odot}$

Example 2 - Radioactive Decay

N(t) = **quantity** at time t.

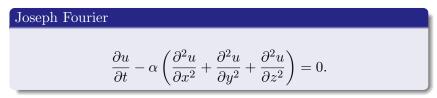
Math 371 - Differential Equations 000000

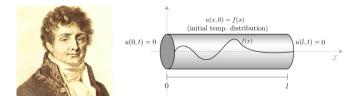
Example 3 - Newton's Law of Cooling

T(t) = **temperature** of object at time t. $T_m =$ temperature of surrounding medium

Isaac Newton

$$\frac{dT}{dt} \propto T - T_m \qquad \text{or}$$


$$\boxed{\frac{dT}{dt} = k(T - T_m)}$$



Example 4 - Heat Equation

u(x, y, z, t) = **temperature** of object located at (x, y, z) at time t.

 $\alpha =$ thermal diffusivity (constant for a uniform material).

